The Benefits of Using Gravity
The leading suppliers offer their outlook on the current state of gravity-separation technology
By Simon Walker, European Editor
Panning and vanning, later upgraded by mechanization into shaking tables and jigs, formed the main means of recovering dense minerals for centuries, and it was only the advent of flotation for sulphide ores and cyanidation for gold that relegated gravity separation to a minor place in the processing hierar-chy. By contrast, its use in coal wash-ing—initially using jigs then with en-hanced process capabilities through the introduction of dense-medium sys-tems—began in the late 19 th century and has remained a washery mainstay ever since. Likewise the use of spirals for iron ore beneficiation. The big inno-vations in the past 25 years have been the development of ‘assisted gravity’ equipment, such as bowls for gold recovery, and the transfer of jig technol-ogy to a range of other minerals. Here, the contrast is that the concentrate is formed from sink material whereas in coal washing, the sinks are waste.
As the Australian company, Gekko Systems, notes, in recent years flow-sheet designers have been reassessing gravity-separation systems for cost and environmental reasons, since they do not use increasingly expensive chemi-cal reagents. And, the company says, there are many situations where a sig-nificant proportion of the valuable min-erals in run-of-mine ore can be recov-ered into a pre-concentrate, thereby cutting subsequent mineral-processing costs.
Jigging Applications
Range Extends
One of the most widely used gravity-separation technologies, jigging, has
extended its range of applications sig-nificantly over the past quarter-century.
Originally used almost exclusively in
coal washing, jigging is now a recognized concept for separating a much
wider range of minerals.
The concept of the jig is based on synthesizing natural processes of strati-fication in which denser material is concentrated below the less-dense in a water bath—comparable to the forma-tion of alluvials but in a controlled process that can handle large through-puts. And whereas the original jig designs used mechanically induced pulsing to assist in stratification, mod-ern systems use air-pulsing to achieve the same effect, but with much greater control and efficiency.
E&MJ asked one of the major sup-pliers of jig technology for minerals separation, Delkor (now a Tenova Mining & Minerals company), to ex-plain in more detail how jig applica-tions have been extended in the recent past. The company’s product manager for jig technology, Anup Dutta, con-firmed how in earlier times jigs were only used for coal processing, but that in the past 20–30 years under-bed pulsed jigs have become used increas-ingly for separating hard and dense materials such as iron ore, diamonds, gold, manganese ore, barite and heavy-mineral sands. “Jigs have also been used very successfully to recover met-als such as ferrochrome and ferro-man-ganese from slags, at size ranges vary-ing from 0.5 to 30 mm at varying gran-ulometry,” he added.
Dutta went on to explain how Delkor is now taking the lead within Tenova Mining & Minerals in terms of its jig-ging technology. “Bateman developed its proprietary technology known as the Apic jig,” he said, “which was a tech-nologically advanced version of some of the older air-driven jigs. It successfully commissioned Apic jigs in coal and heavy minerals such as iron ore and manganese ore, along with ferro-metal slag applications. Since Tenova acquired Bateman and Delkor in early 2012, its jig technology has been con-solidated under Delkor, with its prod-ucts now being marketed as Delkor Apic jigs.”
Benefits claimed for Apic jigs include their ability to deal with both fine and coarse material effectively and efficiently, and that they can concen-trate either lighter float or heavier sink material in a wide range of particle sizes. Delkor also points out that they can cope with a wide range of deslimed and non-deslimed feed and discharge rates, as well as continuously varying feed grades. Another significant advan-tage is that their operating costs are lower than competitive separation tech-nologies, while there is no loss of heavy media since none is used.
“Compared to other separation tech-nologies, and specifically to dense-media processes, jigging has the edge in terms of its energy usage,” said Dutta. “Generally speaking, jigging has a spe-cific power consumption of around 2.75–3.25 kWh/mt of raw material feed, while dense-media systems need 3.75–5 kWh/mt, depending on the design con-siderations and the technology applied in relation to the feed characteristics and the throughput.”
From Coarse to Fine
Dutta also explained that the sizing and
design of a jig plant is very sensitive to
the nature and beneficiation character-istics of the raw material to be processed. “Although attempts have been
made to standardize the design, we feel
that some design changes or modifica-tions will be needed for each kind of
feed. This will optimize the efficiency
for that particular material, or if the
system needs to be flexible enough to
handle material coming from a number
of feed sources.”
To illustrate this, Delkor now pro-duces jigs in sizes ranging from 500 mm to 8 m wide, covering applica-tions ranging from pilot plants to full industrial installations. The number of jigging chambers, from two to seven, is also dependent on the required separa-tion efficiency and the number of prod-ucts, with individual unit capacities varying from 10 to 1,000 mt/h for coal plants and from 10 to 350 mt/h for heavy-mineral applications. In terms of particle size-handling capabilities, the company’s fines jigs operate in the range 0.5–20 mm, medium-grain jigs from 20 to 80 mm and coarse-grain jigs from 75 to 125–150mm.
Today’s jigging technology has be-come much more sophisticated and con-trollable through the use of systems such as Delkor’s Jig Scan PLC software. By controlling parameters such as the pul-sation frequency, stroke and pattern, this in turn means that the separation cut point can be fine-tuned more effectively.
Optimizing the cut point depends on achieving proper settling of the sink material, Dutta told E&MJ, which requires uniform feed distribution as well as controlling the specific through-put relative to the jig width, and the jig-ging air quantity and pressure. It is also important to have accurate measure-ments of the settled bed height, with advances in instrumentation and ultra-sonic sensors having improved this. In addition, he said, the sink-discharge mechanism plays an important role in obtaining better cut-point control.
One of the biggest changes in jig applications has been the transfer of the concept from essentially coarse feed material, in which the density differ-ences between float and sink con-stituents are clearer, to its use for sepa-rating fines. As Delkor notes, for exam-ple, jigging iron-ore fines is very diffi-cult, and factors such as fluctuating pulse frequencies, pulse dampening, the extraction methods and dead areas on the jigging surface—which can be neglected in the case of coarse iron-ore jigging—can have a significant effect on the jig performance in this situation.
Bateman installed two of its Apic jigs for handling iron-ore fines. The first, at Corumba in Brazil, was subse-quently optimized with Delkor applying the changes made to the next installa-tion at an Indian iron ore operation. In both cases, the systems have worked well, Dutta said.
Changes made included reducing the bed depth in the first two jig com-partments, allowing the jig pulse to dilate all parts of the jig bed effective-ly. This improved the unit’s perform-ance and the product grade, but at the expense of lower recovery, so Delkor then cut the velocity of the hutch water over the end weir to thicken the reject layer and prevent scouring of the jig bed. Finally, the company optimized the control settings on the jig, and the height of the chamber levels, testwork having indicated that recovery could be improved by around 8% by running chamber levels high compared to low.
An Australian Viewpoint
E&MJ also sought the views of Gekko
Systems’ business development direc-tor, Sandy Gray, on the way in which the
use of jig technology has extended in
the recent past. “Gekko has seen projects in polymetallics, which have not
been a traditional gravity-separation
area, and with gold sulphides being
more reliant on gravity separation. We
believe this to be the future, especially
in coarser separation,” he said.
“For instance at Pirquitas [Silver Standard Resources’ mine in Argen-tina], we did an operation for silver, tin and zinc pre-concentration ahead of the mill in which we upgraded the ore by 30%–40%,” he added. “Applications in polymetallics are starting to increase, and certainly in all types of sulphide recoveries.”
Gekko has developed its primary gravity-separation system, the Inline Pressure Jig (IPJ), over the last 17– 20 years, Gray told E&MJ, noting it has become a reliable continuous separator that can recover minerals down to the 100 µm. “The uniqueness of the jig allows it to be used in applications where there is a broad range of sizes to treat, and it is extremely useful in grinding circuits,” he explained. “The other focus is the recirculating loads and gangue rejection with this unit.”
“The key target area is in gangue rejection,” he said. “We are not only focusing on the recovery of the valuable minerals into a small concentrate. Much emphasis is being placed reject-ing gangue materials before spending energy on them—discarding them early in the process cuts the costs of energy, time and chemicals used down-stream. Every ton of gangue removed from the system early allows a further fresh ton to be treated, which increases the metal value delivered to the down-stream process for the same level of energy absorbed.”
According to Gray, Gekko’s jigging technology was developed predomi-nantly for production in extremely low-grade, high-tonnage operations and for recovering gold. However, early re-search and development work highlight-ed the potential for high recovery of sul-phides and other heavy materials, lead-ing the company to develop its InLine Spinner to recover free gold from IPJ concentrates that are typically heavy with sulphides and free gold. Designed for heavy concentrate feeds, the spin-ner deliberately exerts relatively low ‘g’ forces on the feed and has different separation mechanisms compared to other bowl-type centrifugal concentrators, he said.
“Coarse liberation and gravity is, in our mind, the way of the future, because of its reduced energy con-sumption throughout the process, and the focus on primary pre-concentration and gangue rejection ahead of the milling system,” Gray stated. “Gekko’s Python technology allows for all the concepts of gravity, pre-concentration and gangue rejection into one package. Developing the Python flowsheet and modular plant allows for a low capital and operating cost system with pre-designed flexibility.”
Designed as a compact, modular processing system, Python consists of a process train encompassing coarse and fine crushing, screening, gravity and/or flotation separation, concentrate han-dling and a tailings-disposal system. By pre-concentrating underground, the company says, transport volumes can be reduced and costs cut. In the most recent edition of its Footprintnewslet-ter, Gekko describes an updated version of the Python that has been re-engi-neered to handle gold recovery from surface waste-rock dumps. Gold Fields has been a long-term user of its equip-ment, according to Gekko, with an underground Python system at its Kloof mine in South Africa, and plans to use a surface Python to recover gold from its KDC East waste-rock dumps.
Challenges and Solutions
Gray identified several challenges being
faced when working with gravity separa-tion technology. Critical to success, he
said, is getting the testwork right. It is
essential to ensure the samples are rep-resentative due to the generally low
number of samples tested in most pro-grams. The success of testwork to the
application is dependent on the reliabil-ity of the sampling to provide an accu-rate representation of the orebody.
A second area of concern is the skill level at mine sites. Gray noted that there is an inherent need to ensure that the skill level and education of the oper-ators is taken into account, and that there is a focus during the commission-ing process to allow for adequate opera-tor training time. This is critical to the success of the plant, he said, adding that there appears to be a strong corre-lation between gaps in training and the efficiency experienced at the mine. Commissioning time, post-commission-ing and optimization are pivotal to a sys-tem’s success, he went on, with Gekko now offering operating contracts to assist in the optimization of plant instal-lation and production ramp-up.
Gekko says that in general with the IPJ, the fine-tuning of cut points has been managed through the develop-ment of new ragging material. While parameters traditionally used to control the cut point in a jig include the upflow of water and pulse rate of the unit, in the IPJ the internal ragging performs this function. Instead of using naturally occurring ragging materials, which are essentially uncontrollable, the company has developed ragging made from spherical, metal-filled polymer balls, and defines the separation cut-point by changing the density and size of the balls. As well as increasing the effi-ciency and reliability of the process, controlling the ragging density and con-sistency in this way enables it to pre-dict outcomes accurately.
New control systems provide very accurate and repeatable control of all the IPJ’s operating parameters, such as the number of cycles per minute, down-stroke speed and length of stroke, and will have a significant impact on achiev-ing repeatable results and making on-line changes to the unit, Gekko adds.
Asked about improvements that could be made to current technology that would not require significant investment to provide a noticeable return, Gray replied that there are two key areas, the first of which is using fine crushing to produce the right prod-uct to feed gravity-separation systems. The second is fine gravity separation and continuous units to handle high tonnage of fine material, he went on, pointing out that this is a large R&D area where investment is required. “We need to consider gravity separation as a primary technology rather than a sec-ondary area to allow for significant return and improvements,” he said.
FLSmidth Develops Knelson
In September 2011, FLSmidth bought
Knelson, the Canadian company that
had—through its concentrator designs—
established itself as a world leader in
gravity-separation technology, with over
3,000 installations in more than 70
countries. Since then, FLSmidth reports,
the innovative spirit that made Knelson
one of the most widely recognized and
accepted brands in the minerals industry
continues to thrive. Doug Corsan,
FLSmidth Knelson’s global product
director, told E&MJ: “Over the past 18
months we’ve made tremendous strides
in the on-going development of our
application-based CONE*Logic™ con-centrate cone-selection system. This
enables us to work with our clients to
assess their specific metallurgical needs
and operating conditions, to tailor a con-centrate cone solution that is precisely
to their requirements.
“We began development of the CONE*Logicsystem in 2003, and over the past nine years we have worked closely with many of our clients to devise a method of cone selection that looks at five fundamental factors of operation. These include mineralogical test data, target particle size and shape, circuit water constraints, water quality and ore abrasivity,” Corsan added.
As part of its development of the industry’s first fully customized con-centrate cone solution, the company has developed a new cone manufactur-ing platform called the Matrix Cone. During extensive field testing over the past three years, it says, the Matrix Cone has proved to provide superior metallurgical recovery, along with extended cone-cleaning intervals on average by a factor of five times, while at the same time reducing operating and maintenance costs.
Shaking Tables Still
Play a Role
Shaking-table technology may appear
archaic to many mineral processing
engineers, yet as Chris Bailey, manag-ing director of UK-based Holman-Wilfley Ltd., told E&MJ, the company is
still finding new applications for its two
well-known brands. “We have remained
committed to the development of gravi-ty tables, providing niche separating
areas in the mineral processor’s flow-sheet—often still unmatched by alter-native more recent technology develop-ments,” he said. “This is coupled with
an expansive demand in minerals from
developing-world markets such as
China and India for specific products
like tin metal and titanium pigments.
“Tables are often needed at the end of a circuit so, for example, we see our units being used for cleaning-up pre-concentrates from Knelson concentrators in gold-recovery plants.”
Bailey went on to explain that Holman technology evolved strongly in the 1960s and 1970s in tin-processing flowsheets around the world, and that these machines are now well-proven for relia-bility and for the metallurgical advantage of ‘spreading’ the concentrate products over a wider discharge area—allowing finer control of product grades. This design also lends itself to the separation of difficult minerals that have close spe-cific gravities, such as are found in allu-vial mineral sands. In modern flow-sheets, the gravity table provides the final concentrating stages of high-vol-ume rougher treatment by gravity spirals.
The company’s Wilfley product line is marketed to the recycling industry for the separation of metals in electrical and electronic scrap, Bailey told E&MJ. “These units have long been in use in Europe for copper-cable reprocessing, and remain highly respected and capa-ble in newer, advanced plants for processing electrical and electronic waste.
“In some cases these units operate with feed sizes well outside recom-mended gravity-table use,” he said, “for example minus-6 mm, but they still provide the necessary separation in a way that is unmatched by more accepted dry-processing routes.”
Expanding Application
Interest
As can be seen, interest in gravity-sep-aration technology is by no means at a
low ebb. Take, for example, the use of
cones in heavy-mineral recovery, or spi-rals in coal and iron-ore processing.
The Australian company, Mineral Tech-nologies, reported that during 2010-2011 it supplied ArcelorMittal with the
largest single spirals order in its histo-ry, used for iron-ore upgrading at the
Mont Wright operation in Canada. The
company has also supplied its Kelsey
centrifugal jigs to customers in
Australia, South Africa, Brazil, Peru,
Bolivia, India and the U.S.A. for pro-cessing zircon, rutile, tin, tantalum,
tungsten, gold and nickel.
Meanwhile, in 2011 German manu-facturer allmineral won a contract to supply an 80-mt/h alljig®unit for Rio Tinto’s low-grade iron-ore pilot plant in Western Australia, a unit that can han-dle both fines and lump material up to 32 mm as well as treating a wide range of particle-size ratios, the company says. It had earlier supplied two alljigs to Outokumpu’s Tornio ferrochrome plant in Finland, where they are used for reprocessing smelter slag.
And MBE-CMT reports that over 300 of its Batac jigs are now in operation around the world, handling iron, tin and manganese ores and alloy slags, as well as coal. The main advantages of Batac jigs, the company said, are higher effi-ciency, better product quality, higher availability and greater throughput rates, with units offering throughput rates of between 30 and 1,000 mt/h while handling 1–150-mm feed sizes. Gravity separation is clearly still a valuable component in the mineral-pro-cessing toolkit and, as new applications are identified within the non-coal sec-tor, its niche position looks certain to expand further.
Air Classification Enhances Gravity-Separation Effects
In the most recent edition of its customer magazine Results, Metso Minerals reported on two applications where its air-classification technology has helped customers achieve prod-uct-quality results by using centrifugal force to enhance grav-ity effects. In the first, Arizona-based Salt River Materials Group uses Metso centrifugal air classifiers to produce fine fly-ash for use as a feed material in the local ready-mix con-crete and other markets. The raw fly-ash obtained from coal-fired power stations con-tains a range of particle sizes, while the company’s customers need coarse particles removed. Salt River now has three plants in operation, with a combined capacity of around 1.45 million mt/y, using classifiers that are designed for separations in the range 20–100 µm (635–140 mesh). Metso notes that wear in the classifiers is minimal, since there are no moving parts, that adjustments to the cut point can be made by fine-tuning the airstreams, and that the concept is suitable for other industri-al-mineral and fine-grinding applications. In the second case study, Luck Stone Corp. uses Metso gravitational inertial classifiers to produce finely graded engineered sand from rock produced at its quarries in the eastern U.S. Faced with the disadvantages inherent in wet processing systems, the company evaluated a number of dry-processing routes before selecting this type of classifier. Metso explains that it now offers three classifier sys-tems: gravitational classifiers, which produce 0.15– 1.65 mm (12–100 mesh) separations and are suitable for coarse industrial minerals; centrifugal classifiers, which produce 0.02–0.15 mm (100–600 mesh) separations and are suitable for industrial mineral, mining, fly-ash and cement applications; and gravitational inertial classifiers, which produce 0.063–0.3 mm (50–230 mesh) separations and are used for precise engineered-sand applications. By using these, and Metso air classifiers, Luck Stone now pro-duces engineered sand to meet both asphalt and concrete industry specifications. |