Beating Crusher Wear Challenges
Developments in the metallurgy of crusher wear parts are helping operators reduce
the impact of wear on their operations
By Simon Walker, European Editor
And, while excavator buckets and truck beds bear the initial brunt of run-of-mine ore, crushers run a close sec-ond in terms of the tonnage of material handled and their persistent exposure to abrasion on the one hand, and the massive forces needed to break rock on the other. Abrasion, needless to say, results in wear, while the continuous crushing forces will test the mechanical integrity of any material exposed to them. For this reason, wear parts that are installed in crushers have a double function. Not only must they protect the machine itself, but they must be physically strong enough to survive in a brutally tough working environment.
E&MJ asked some of the world’s leading crusher manufacturers and wear-parts suppliers for their views on a number of key aspects relating to the design and production of wear parts for crushers. There is obviously a trade-off in place between durability and pur-chase cost, given that the production of wear parts involves highly sophisticated casting techniques using specialist alloys, so it is often the case that the most suitable wear-part materials for a particular operation can only be deter-mined once ore has been running through the crusher at design produc-tion levels over time.
The Best Materials
The development in 1882 of austenitic
manganese-rich steel (Hadfield steel),
containing between 11% and 14%
manganese and around 1.2% carbon,
led to its use in high-wear applications.
Major advantages for this material
include its toughness and ductility, and
the fact that continuous surface
impacts result in work-hardening with-out any increase in brittleness. In con-sequence, Hadfield steels and their
technological descendants provide both
strength and abrasion resistance; qual-ities that are essential for wear parts
that can withstand the rigors of the
crushing process.
Chris Sydenham, technical director at CMS Cepcor said that premium man-ganese steel grades today have a higher manganese content, commonly in the 18%-24% range. In addition, he said, other alloying elements are often added, the most common being chromi-um and molybdenum, and to a lesser extent titanium, vanadium and nickel. These specific modifications to the metallurgical composition are targeted to achieve improved wear resistance and toughness.
As Steven Hanny, product line man-ager for mining crushing chambers at Sandvik confirmed, there are many types of manganese steel. The most common usually contain different alloy-ing elements to enhance the tough-ness and hardness. More manganese is needed to bind with the other alloy materials, however; a higher man-ganese content does not necessarily mean that the wear parts will be better in a specific application. Working with alloys that are suited for different appli-cations has been one of the significant improvements over the last 20 years, he added. By using different manganese alloys, materials can be customized to a customer’s applications, leading to increased productivity.
However, as Metso’s vice president for crusher wear solutions, Osmo Mäki-Uuro, pointed out, adding other alloying elements may enhance one characteris-tic but weaken others. The individual sit-uation must be well understood before recommending alternatives, he said.
Not all of the research has been into alloying metals. “Recent advances have focused on higher carbon grades to improve wear performance, with other additions to maintain heavy-section properties at these higher carbon lev-els,” said John Dillon, vice-president for engineering and technical services at ESCO Corp.
“At ESCO, we patented an alloy that incorporates aluminum to increase the amount of carbon we can introduce in the alloy without sacrificing ductility. To my knowledge, that is the highest carbon grade in routine production. The introduction of higher carbon grades— starting about 20 years ago—has been the most significant improvement to the metallurgy,” Dillon said.
High-manganese steels are not with-out their challenges when it comes to manufacturing. Wear parts of all types are usually foundry cast, with one of the key requirements being to control the formation of carbides within the materi-al as it is cooling. Heat treating, used to strengthen the material further, can also cause carbide precipitation, espe-cially in thick sections.
Work-hardening Gives Longer Life
One of the key attributes of high-man-ganese steel, work hardening generates
a tougher surface to the part, helping
to protect it from wear. Of equal im-portance, said Hanny, is that the main
material is very strong and tough and
can withstand high forces without
cracking. Manganese steel develops a
low-friction polished surface that
results in better crushing properties
for the crushing chamber, while being
tough with properties that prevent
crack propagation and allow for longer
life times.
Low-alloy steels and special high-chrome materials have expanded their application areas and today offer signif-icant life improvements, said Mäki-Uuro. In addition, metal matrix com-posites—involving the addition of poly-mers and ceramics—are increasingly playing a bigger role in wear solutions, and have given some impressive results. Using these materials is also broadening the usage range for some crusher technologies, he went on, with their lower weight loss per ton when used in wear parts meaning that equip-ment can be economically used in more abrasive applications today than was the case in the past.
Other companies have successfully explored the potential of increasing the manganese content of the alloy, as Alan George, marketing communications manager for Columbia Steel, explained. Referring to the company’s Xtralloy 24% manganese steel for crusher wear parts, he noted that no other foundry can manufacture wear parts with this manganese content, with the company having been delivering 24% Mn crush-er wear parts to the mining industry since 1988. The company reports that Xtralloy has significantly higher man-ganese and carbon contents than con-ventional Hadfield steel, claiming it has up to double the wear life compared with earlier materials, especially when handling tough, abrasive rock.
According to Hanny, casting thicker sections in high-manganese alloys can be difficult. Steel with a higher man-ganese content has lower heat transfer characteristics during quenching, which makes it more difficult to cast thick pieces. To compensate for the lower heat transfer, other alloying met-als must be added, which can make the casting process both more complex and more expensive, he said.
“The fluidity of manganese steel is relatively good, making it possible to cast complex shapes,” said Sydenham. However, manganese steel achieves its inherent properties of good toughness and the ability to work-harden through heat treatment, which involves water quenching from its solutionizing tem-perature of above 1,000°C. This severe quenching action causes distortion issues to the part, especially those of complex shapes having differing section thickness across the part.”
“Process controls in melting and heat treatment have continued to evolve, with a resulting improvement in consistency from quality manufactur-ers,” said Dillon.
Changing Geology Brings
New Challenges
Clearly, the economic life-span of
crusher wear parts depends on more
than just the materials from which they
are made. Changing rock parameters,
such as the silica content, will have a
noticeable impact on the change-out
cycle time, as will the tonnage of mate-rial being handled and the design of the
crushing chamber itself.
A general trend is that today’s crush-ers draw more power and use higher crushing forces than before. Because of this, said Mäki-Uuro, the physical prop-erties of the wear parts must meet the changed conditions, while aiming to minimize the wear rate in terms of the material weight loss (in grams per ton of output product).
There is also the question of changing conditions in the geology of orebodies now being worked compared with, say, 20–30 years ago. As Osmo Mäki-Uuro pointed out, there are significant differ-ences between the iron ores produced in the U.S. (hard, abrasive taconite) and in Australia, where the ore is less abrasive. And, he said, mines being developed as greenfield projects today are often based on deposits that are hosted in less-abra-sive rocks than where existing mines are being expanded.
Hanny agreed that there have been changes in the rock characteristics being handled today compared with 20 years ago. These change even within an individual mine, by depth and location, as a result of variations in the geologi-cal conditions and the rock/ore mineral-ogy. Usually mines encounter less-weathered rock as they get deeper, with the potential for less alteration and harder material. “What we can see is that mining companies are working lower-grade ores, and much more barren rock, which can be harder on account of their mineralogy,” Hanny said.
“One factor that is having an effect is that ore grades are declining, so more rock has to be processed to produce the same amount of mineral. Attention to crusher design and alloy selection is critical to limit the cost of the crushed stone,” said Dillon.
Optimizing Maintenance
Crushers are usually key components
within any mineral-processing system, so
operators strive to minimize the downtime involved in changing out wear parts. In
addition, each mine has to strike its own
balance between the cost of buying
replacement parts and the cost of lost pro-duction while fitting them. Cheaper parts
may not translate into lower operating
costs when looking at the bigger picture.
While all of the major suppliers of wear parts, both OEMs and independent after-market companies, guarantee com-patibility of their components with the equipment they are intended for, that does not necessarily mean that exchang-ing old-for-new will be straightforward. Crushers by their very nature have a challenging lifestyle, which can trans-late into difficult change-out conditions as old liners wedge tightly into place.
According to Mäki-Uuro, Metso offers a wide range of options in its ser-vices portfolio, from change-out service to total life-cycle services programmed. Many customers, he added, carry change-out components such as spare head and shaft assemblies that allow for quick change-outs with the wear parts then being replaced in the workshop.
“The company regards top cone-crusher serviceability as a key customer benefit, and we are also developing dif-ferent lifting tools for our parts that will make maintenance work faster and safer,” said Hanny. “Sandvik’s ASRi (Automatic Setting Regulation) systems keeps track of liner wear, which makes it easier to plan liner changes and min-imize interruptions in production.”
“Whenever possible, ESCO adds cast-in-place lifting devices directly to its wear parts, which support safe handling procedures to hoist these large parts in and out of crusher frames,” said Dillon.
“Our engineers are constantly striving to improve the design of our products to improve safe handling and to facilitate ease of fitting,” said Sydenham. “An example of this would be our alloy steel concave segments, where we have recently provided a solution for a cus-tomer by reducing the number of seg-ments in a set from 60 to 16. This not only reduces the number of parts being lifted, but also takes far less time to fit.”
Optimizing Wear-part Costs
The cost of replacing liners and other
wear items in crushing plant on a regu-lar basis is a function of the material
being crushed, the quality of the wear
parts being used and, most importantly,
the way that the crushing chamber is
set up. As Mäki-Uuro explained, the
way the rock flows through the crushing
chamber is critical, and depends on
the chamber design. Each application
needs to be tailored to the individual
site conditions, depending on the input
material characteristics and the type of
product that is required: this may be
vastly different for a mining operation
or for aggregates production.
Clearly, then, there can be significant cost differences for replacing wear parts, not only in terms of the parts themselves but also in the labor needed. Liners that wear quickly will need replacing more frequently, and the crusher will be down more often as a result.
So, what should mines expect in terms of regular replacement costs, as a proportion of the initial cost of a crusher?
“Wear-part life is directly related to the material characteristics and mining operations. As a very general rule of thumb, one could estimate somewhere between one-third and one-half,” said Hanny.
“The consumption of wear parts is so dependent on the application of the machine and factors such as the compressive strength and work index,” said Sydenham. In a worst-case sce-nario, a mining company might spend roughly 50% of the capital cost of the base crusher per year on wear parts for that machine.”
“Part lifetimes have improved in recent years. Since higher carbon grades were developed, wear resistance has improved and, subsequently in most applications, the parts last longer. Better designs have optimized the placement of wear metal to improve production through the crusher while providing better wear life. Wear life should really be measured as tons of material produced rather than hours, so crushing performance is a criti-cal area of focus,” said Dillon.
Market Trends
The clear message from all of the manu-facturers is that each operation has to
work out the best solution to crusher oper-ation for their own individual circum-stances, which may well change over time.
According to Hanny, one top priority within the mining industry is to reduce downtime due to liner changes. Even a short unscheduled maintenance stop in production can mean a big profit loss. Environmental impact is also increasing in importance with our customers, so we are working with materials, life-times, the production process and logistics so as to minimize our and our customers’ environmental impact.
Other materials are also playing a role. “Materials other than man-ganese steel have been introduced for crusher wear parts, especially in pri-mary gyratory concave segments,” said Sydenham. Various grades of pearlitic and martensitic low steel and iron heat-treated to high hardness are gaining more popularity over manganese steel concave segments. Some manufactur-ers have also done trials on casting high-hardness alloy iron inserts into the manganese steel matrix material to enhance wear resistance.”
“In the future, I see more customized solutions at each crushing stage to enhance the total value of the operation, helping to optimize the product shape, amount of fines, system capacity, energy usage and wear costs for each individual customer,” said Mäki-Uuro.