The Case for Trolley Assist
High fuel prices are the main reason mine operators consider trolley assist for haul trucks, but safety and sustainability are also important considerations
By Dr. Joy Mazumdar
Instead of generating electricity from the diesel engine and the electric generator on the truck, it's sourced from a dedicated substation and transmitted via an overhead catenary to the drive motors on the truck.
Past experience has shown the best system to fulfill this function should be based on designs used in conventional catenary systems, such as those used for traction drives on light railway infrastructure. A similar system has been optimized for mining operations, which have similar demands such as mechanical stability, operating reliability and low maintenance. The infrastructure for a complete trolley system includes a catenary system, traction substations, a trolley mast-mounted high voltage supply, a trolley box mounted on the truck deck, and illumination of the catenary system.
The overhead wires are fed from a transportable rectifier station via high speed DC circuit breakers. Masts are placed along the haul routes carrying two catenaries on a single cantilever. Each catenary comprises copper messenger wires and copper silver alloy contact wires. The messenger and contact wires are each tensioned via weight tensioning equipment. The mast and foundation poles are painted, while all other fabricated steel work on the line is galvanized. The line equipment is assembled using galvanized copper alloys or stainless steel hardware.
A robust transportable traction substation has been designed to cope with rough environmental and operational conditions, including the repeated load that is so typical in traction applications, along with dust, corrosive elements, high temperatures and 24 hour operation. The substation equipment is modularly designed and mounted on skids that allow it to be easily moved from site to site as mining progresses.
The energy crisis in the 1980s led to the development of a trolley system for mines. Today, Siemens is a leading supplier of trolley technology and infrastructure and the company has seen a lot of renewed interest, primarily due to diesel fuel consumption. Aside from the obvious reduction in fuel cost, further advantages have been realized with modern systems, including:
• Increased production capacity of the
mine and a reduced number of trucks
due to higher speed of the trucks on a
trolley system (better fleet utilization);
• Greater accessibility in the deeper
parts of the mine. The trucks under
trolley power are able to achieve higher
gradients and operate at full load
for longer periods;
• Reduction of maintenance costs on
the trucks, particularly on the diesel
engine, which would normally suffer
the greatest wear while operating at
full load only while on the ramp;
• Increased availability and decreased
life cycle costs for the diesel engine
(less operating hours);
• Ability to handle a wide range of line
voltages;
• Ability to run on the line at any speed
and payload; and
• Environmental improvements (lower
emissions and less noise).
In terms of installed base, Africa is the leader in trolley assist. However, as fuel costs continue to climb, mines globally are taking a proactive approach.
Instead of feeding power to the truck from the diesel engine, power is drawn from overhead lines (See Figure 1). The overhead lines are connected directly to the DC link.
At the engine's top speed, the fuel rate is 450 liters/hr (See Figure 2), but with trolley assist, the engine idles and the fuel rate drops to 40 liters/hr. This reduction leads to considerable fuel savings and is a significant step toward mines becoming more energy efficient.
Trolley systems are advantageous for mines where there is a big difference between diesel and electricity costs. For example, a power plant may have its own mine, or a mine may have its own power plant. In such cases, the mines want to run the trucks on trolley as power is much cheaper for them.
Mining haul trucks, like any other mobile application, have constant motoring and braking modes. The full regeneration of the braking energy is one of the most promising sources of energy savings to a mine. Trolley systems for mining are derivatives of traction overhead systems. Solutions in the traction overhead lines exist for 750 VDC or 1,500 VDC. Mining trucks operate at the higher voltages.
Trolley systems for most mining haul trucks are installed for uphill hauls. On the downhill haul, the energy is wasted in the grid resistors. However, the trolley assist system could be designed in such a way that it improves the overall line receptivity of the DC power system by transferring the braking energy to the AC side, regenerating it, via the transformer, to the AC medium voltage distribution network. This energy could be used by other loads in the mine or used by the utility grid.
This system can be easily achieved by replacing the uncontrolled diode bridge rectifier with an active rectifier. This transforms the traditional unidirectional substation into a reversible one. The key benefits expected from reversible substations are:
• Regeneration of the braking energy at
all times, while maintaining priority to
natural exchange of energy between
trucks.
• Reduction/elimination of the braking
resistors, and thus reduction of the
truck mass and heat release.
• Regulation of the output DC voltage to
make the DC overhead line voltage independent
of the AC line fluctuations.
• Reductions in the levels of harmonics
and improvement of the power factor
on the AC side.
The term Active Front End (AFE) is normally used to describe the line-side converter with active switches such as IGBTs. A typical Siemens AFE-based rectifier system topology consists of AFE converter(s) on the line-side, a DClink capacitor and boost inductors. Depending on the power requirements, the rectifier system could have multiple AFE converters all connected to a common DC-link. The AFE converter normally functions as a rectifier. But, during regeneration it can also be operated as an inverter, feeding power back to the line. The AFE inverter is also popularly referred to as a PWM rectifier. This is due to the fact that, with active switches, the rectifier can be switched using a suitable pulse width modulation
The AFE inverter basically operates as a boost chopper with AC voltage at the input, but DC voltage at the output. The intermediate DC-link voltage should be higher than the peak of the supply voltage. This is required to avoid saturation of the PWM controller due to insufficient DC link voltage, resulting in line side harmonics. The required DClink voltage needs be maintained constant during rectifier as well as inverter operation of the line side converter. The ripple in DC-link voltage can be reduced using an appropriately sized capacitor bank (See Figure 3).
Replacing the diode bridge rectifier in a unidirectional substation with IGBTs transforms it into a bidirectional substation (See Figure 4).
The key features of using AFE inverters include:
• Regenerative Capabilities—In normal
motoring mode of the drive, power
flows from supply-side to the motor.
The line-side converter operates as a
rectifier, whereas the load-side converter
operates as an inverter. During
regenerative braking mode, the converters'
respective roles are reversed.
The system can seamlessly regenerate
power whenever needed;
• Unity Power Factor Operation—With
the line currents in phase with the
line voltages, the unwanted reactive
currents are eliminated. Since regeneration
is also possible at unity power
factor, the overall power quality is
improved significantly;
• Reactive Power Compensation—Alternatively,
the kVA ratings saved due to
the unity power factor operation can
be used to provide reactive power
compensation to the utility system.
The double-sided power converter
acts as VAR compensator while supplying
the load;
• Harmonic Cancellation and Improved Interface
with the Utility—Harmonics introduced
by line-commutated rectifiers
do not exist in AFE inverters. The harmonics
introduced by switching active
devices (IGBTs) are reduced by staggering
the AFE inverters. Overall total harmonic
distortion (THD) in line currents
and line voltage is much less and comply
with the utility regulations; and
• Satisfactory Operation During Line
Voltage Dips—The line reactor and
transformer secondary impedance
allows AFE inverters to push DC-link
voltage higher than peak line voltage.
During line voltage dips of up to 30%
a constant DC-link voltage can be
maintained and satisfactory operation
of the drive is possible.
Figure 3—Block diagram of unidirectional substation.
Figure 4—Block diagram of bidirectional substation.
Potential Savings
Based on mine-specific system parameters
such as haul cycle distances,
grade, production requirements and
prices of diesel fuel and electricity, it is
possible to predict investment costs,
energy costs and maintenance costs as
well as production values and payback
time (return on investment). Ultimately,
the cost savings from trolley assist
occur when hauling the same amount of
material while using less trucks or by
hauling more payload using the same
number of trucks.
Calculations have shown a 300-ton loaded truck going down the ramp will regenerate approximately 3 MW into the grid. An empty truck going downhill on a similar profile will regenerate approximately 1.3 MW into the grid. Calculations as well as feasibility studies have shown that a trolley system achieves payback in two to four years.
Based on analysis that was performed in South Africa, it was observed that a loaded truck going 1-km downhill generated approximately 7,900 kWh of energy per day (20 hr operation, 5 minutes loading and spotting time per cycle). At an energy cost of 0.60 ZAR ($0.077) per kWh, the cost of regeneration energy per day per truck will be 4,750 ZAR ($608). For an empty truck on a similar profile, the cost of regeneration energy per day per truck will be 2,050 ZAR ($262). The impact and savings will be higher as the ramp length and the truck fleet size increase.
Haul truck technology has shown enormous development in recent years. It has produced important performance improvements with increasing payload capacity. Now, electric-drive haul trucks outfitted with pantographs can pull power from an overhead trolley line. The trucks run on diesel power in the pit, around the crusher and on level segments. The trolley line provides power on the grade resulting in increased truck speed, extending intervals between engine overhauls and reducing energy costs. To date, Siemens is the only company that provides trolley solutions for AC haul trucks in the ultra class range.
References
1. J. Mazumdar and W. Koellner;
“System and Method for Reinjection
of Retard Energy in a Trolley Based
IGBT Electric Truck,” U.S. patent
application filed 2009.
2. J. Mazumdar and W. Koellner; “Peak
Demand Reduction in Mining Haul
Trucks Utilizing an On-Board Energy
Storage System,” U.S. patent application filed 2009.
Mazumdar is the product marketing man- ager, haul trucks for Siemens Industry, based in Atlanta, Georgia, USA. He can be reached at T: 770-740-3707 (E-mail: Joy.Mazumdar@Siemens.com). This arti- cle was adapted from a presentation he delivered at the Haulage & Loading conference, which took place during May 2011, in Phoenix, Arizona, USA.